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Even in simple cases, algorithms that are simply convergent can be considered as
dynamic systems, after a suitable transformation is applied to each iteration. The
main idea is to renormalise the region containing the search object z*, for instance
the point where a given function f(.) is optimum, so that the target remains in
a standard region Ro. Therefore =™ is no longer fixed but moves in R at each
iteration, and follows the evolution of a dynamic system. Various algorithms are
considered, e.g. line search, ellipsoid, steepest descent. The associated dynamic
systems show different features: in some cases the asymptotic behaviour depends
on z” and/or on the function f(.), and periodic and strange attractors are typical.
A main purpose is to use the theory of dynamic systems to analyse the asymptotic
behaviour of the algorithms, and, when possible, to obtain optimal rates of
convergence.

1. RENORMALISATION

There exist well known applications of dynamical systems to the study of opti-
misation and search algorithms. A classical example is the study of the Newton
map for the cube roots of unity, where the boundaries between the basins of
attraction to the roots form a fractal. The present work develops another
approach, in which the main ingredient is renormalisation. The idea can be
explained as follows.

1 This work was supported by a French-British Alliance grant (nx94002) and by the UK
Science and Engineering Research Council grant for the second author, including a Visiting
Fellowship for the third author, and also by a grant of the French Ministere de I’Education
Nationale (invitation triennale, procédure PAST) for the third author.
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FIGURE 1. Renormalisation

Certain kinds of search and optimisation problems to find a target point
z* € R generate a nested sequence of regions R;, of the same shape, containing

I*

RCRi2O2R22D....

Convergence to z* takes place if the diameter of the sets converges in some
metric to zero. The nesting of the regions occurs because additional observa-
tions or data are available at each stage creating additional assumptions on the
set R, of allowable, or consistent, target values. Note that R; should have a
simple shape, and might be taken larger than R.

Suppose that for each n there is a function g,(.) mapping R,, back to some
base region Ry:

gn: Rn—Ry.

Let z,, = gn(z*) be the location of the target in the renormalised region. The
relation

Tpnt1 = h’n(mn)

describes the path of the process for a given z*, with the starting value z; =
g1(z*). The mapping h,(.) sets up a dynamic system {z,,} in Ry itself: instead
of the target being fixed and R,, changing, Ry is fixed and the target moves.
Figure 1 describes the mapping.

Perhaps the simplest example is the ordinary (first-order) bisection method
to find zero of a monotonic function f(z) in some interval R, with Ry = R =
Ro = [0,1]. Define the renormalised function f,(.) on Ry by

fulz) = fg7 ' (). (1)

At each iteration n of the algorithm f(.) is observed at the midpoint of the
current uncertainty interval. When the interval has been renormalised to [0, 1]
and fn,(0) < 0 < fu(1), in the case f,(3) > O delete the interval (1,1] and
renormalise [0, %] to [0,1]. Analogously, if fn(%) < 0 delete the interval [0, %)

and renormalise [%, 1] to [0, 1].
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In many cases, the form of the function f(.) is such that the dynamic system
{zn} is time homogeneous, that is the mapping z,, — #,4+1 does not depend
on n. In particular, for the bisection method, if f(.) is linear and z,, denotes
the location of * in the current renormalised interval, then the updating rule
for {z,}is h: @, — Tpi1, where

22, if 0<wz,<4%
h(zn) = (2)

20, —1 if 1<z, <1.

This mapping is sometimes called the Bernoulli shift. It is well known to have
an invariant measure which is uniform in [0,1]: for starting values z; = z*
which are normal numbers® to the base 2, the sequence z, has a uniform
asymptotic density.

Another class of examples arises from minimisation of a uniextremal func-
tion on some interval R using a “second-order” algorithm. The algorithm, in
its renormalised form, compares function values at two points, first, e,, from
the previous iteration and second, e, selected by the algorithm at the cur-
rent iteration. Let Ro = [0,1]. Any choice for e; € [0,1] and any function
é(.) : [0,1] — [0,1], with ¢!, = ¢(ey,) then defines a second-order algorithm.
Define

an, = min{en, e}, b, = max{en,e,},

then the deletion rule is:

{ (R) :if fu(an) < fa(bn) delete (by, 1]
(L) : if fn(an) Z fn(bn) delete [0>an)>

with f,(.) defined by (1). Here (R) and (L) stand for right and left deletion.
The remaining interval is then renormalised to [0, 1].
The Golden Section algorithm corresponds to Ry = R and

bnzl—an:)\:$:0.61804,

ie. toel, =1—e,, with e, = A. In the special case when f(z) is symmetric
around z* the algorithm yields the time homogeneous dynamic process ©,4+1 =
h(zy), where 1 = o* and

zn(1+A) if z, <
h(zn) = (3)
o(L+A) =X if z, >

o=

L
5 -
2 A number in [0, 1] is normal to the base 2 if the infinite sequence of 0’s and 1’s corresponding

to its binary representation is such that each finite string of 0’s and 1’s of given length
occurs with the same frequency in the sequence.
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FIGURE 2. The Golden Section iteration

Figure 2 shows this transformation.

In many situations, such as the line-search algorithms of Sections 3 and 4,
the dynamic system cannot be defined only in terms of x,, the renormalised
location of z*. We shall still denote by h,(.) the updating rule for the state of
the dynamic system, which may depend on other variables. When necessary,
we shall then distinguish the dimension d' of the search object z* from the
dimension d of the state of the dynamic system. In particular, in optimisation
problems, if the objective function f(.) = f4(.) belongs to a finite dimensional
space with parameters 6, the parameters 6,, defining the renormalized function
fn() (1) can be taken as state variables. The dynamic system then becomes
time homogeneous, and x,, is completely determined by 6, see for example the
ellipsoid algorithm of Section 5. Note that the condition of finite dimension
for f(.) is not necessary, see the dynamic process (3) induced by the Golden
Section algorithm for a symmetric function. Also note that there are usually
many possible choices for the state variables, and this choice is crucial for the
complexity of the study of the associated dynamic system.

In several important cases the regions R, are larger than the region in
which x* is known to lie, the true consistent region, which may be difficult
to renormalise easily. This trades a lower efficiency in the localisation of z*
with the benefit of a simpler renormalisation rule, or updating rule for the
original process. This is true for an important example in optimisation namely
the ellipsoid algorithm of linear and convex programming, which we address is
Section 5. In its simplest form, the so-called central-cut case, every R, is a
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d'-dimensional ellipsoid. The ellipsoid R, 11 is constructed from the ellipsoid
R, as the minimal volume ellipsoid which contains half of R,,. The half is ob-
tained by cutting R,, through its centre with a (d' —1)-dimensional hyperplane.
Both the orientation of the hyperplane and the choice of which half of the el-
lipsoid depend on details from the iteration step. In the linear programming
case they depend on the orientation of the constraints or the objective function,
and in the convex programming case on information about the gradient. It is
straightforward to renormalise an ellipsoid to a unit sphere, which is our stan-
dard region Ry. Another example is provided by the steepest descent algorithm
in Section 6. Here we again normalise R, to a unit sphere, but so that the
optimising point is fixed at the centre and its current approximation is on the
boundary. Renormalisation by a cube in linear programming is considered in
Section 7.

2. ErRGobDIC THEORY, LYAPUNOV EXPONENTS AND RATES OF CONVERGENCE
The advantage of setting up the problem as a dynamic process is that it opens
up the possibility of using the very considerable machinery of ergodic theory
and chaos. Conversely search and optimisation may provide an operationally
useful area of application of dynamic systems with perhaps a different flavour
to physical, biological and economic applications. But we need to prove our
point. The first issue is to link the rate of convergence of the algorithm with the
characteristics of the dynamic process. A long term objective of the theory is
to use this link to improve rates of convergence. Consider the mapping h,(.) of
the last section. By tracing the diagram in Figure 1 in the clockwise direction
we see that

ha(.) = gnt1(g, () -

It is clear then that since R,, 2 R,+1 the function h,(.) ezpands intervals in R
to reflect the contraction in size from R,, to R,+1. This expansion is related
to the convergence rate of the algorithm.

We shall only consider time-homogeneous dynamic systems, for the study
of which we recall some concepts of ergodic theory. We refer to Mané (1987),
Ruelle (1989), Bedford, Keane and Series (1991) or Ott (1993) for a more
detailed exposition.

Some concepts in ergodic theory.
Consider a dynamic system

Tnt1 = h(z,), n=1,2,... (4)

where h : X — X’ is a mapping of a compact measurable set X’ onto itself. A
measure v on X is invariant under the dynamic system (4) if

v(A) = v(h™'(A))
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for any measurable set A C X. If an invariant probability measure v cannot be
written as %1/1 + %1/2, where v and v, are again invariant probability measures
and vy # vo, then v is ergodic. This is equivalent to the condition: h=1(A) = A
for some measurable set A C X = v(A) = 0 or 1, see Eckmann and Ruelle
(1985). If an ergodic invariant measure exists, then the dynamic system is
called ergodic with respect to this measure.

Suppose an invariant probability measure v has a density p(z). For instance,
existence of an invariant measure with such a density is guaranteed by the
uniform hyperbolicity of the map, see e.g. the midpoint algorithm in Section
3. Then one can write the following equation which expresses invariance with
respect to the movement of the process forward in time:

p(x) = / p(y)6le — h(y)ldy,

where 6(.) is the Dirac delta-function. This equation is called the Frobenius-
Perron equation. In many cases the following differential form of the Frobenius-
Perron equation is more useful:

Z |det Dh (ye)|’ (5)

where {y} = h~!(x) and where Dh is the Jacobian matrix of h with entries
(Dh(z))ij = Ohi(z)/z; ,

where h;(z) here denotes the ith component of h(z). Birkhoft’s ergodic theorem
states that if (4) is an ergodic dynamic system, with v a finite ergodic invariant
measure, and f € L*(X,v), then

for v-almost all initial points z; € X.

A dynamic system will be called chaotic if it is ergodic and two orbits {z,,}
and {z!,} starting at close points z; ~ x| exponentially diverge. The rate of
the divergence is measured by the so called Lyapunov exponents.

Lyapunov exponents.
In the one-dimensional case the Lyapunov exponent of an ergodic system
ZTpi1 = h(z,) is defined as

= lim —Zlog|h' Tn)l,

N—ooo N

where the limit exists for v-almost all initial points z; and A = [ log |h'(z)|dv(z).
In short, the Lyapunov exponents for a d-dimensional map h : X — X
can be defined as follows. Let 21 € X be an initial point in X, {z;} the
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corresponding orbit and u; € R%, ||ui|| = 1 be an arbitrary vector of unit
length. If we consider an infinitesimal displacement from z; in the direction
of a tangent vector u;, then the evolution of the tangent vector, given by
Unt+1 = Dh(zy,)uy,, determines the evolution of the infinitesimal displacement
of the orbit from the unperturbed point ,.This gives u,y1 = Dh™(z1)uy,
where

Dh"(:vl) = Dh(Infl) Dh(wnfz) e Dh(:vl)

The Lyapunov exponent for initial condition z; and initial orientation uy, ||ui|| =
1, is defined as

1 1 .
Alzr,wr) = lim —log([lunt]l/[Jusll) = lim —log(|[Dh™(z1)wil]). — (6)

There are d or less different Lyapunov exponents for a given z1, and which one
of them applies depends on the initial orientation u;.

If the Jacobian matrices Dh™(z1) have real eigenvalues for all n and the
limits in (6) exist, then the d Lyapunov exponents corresponding to the point
1 can be computed as

1

Az(xl) = lim _log()ui,n(lll))v 77:: 17---7d7 (7)
n—oo N,

where p1 n(21) > ... > pgn(x1) are the absolute values of the eigenvalues of

Dh™(x;) taken in decreasing order.

Ergodic theory (Oseledec’s theorem) guarantees the existence of the limits
used in the definition of the Lyapunov exponents under very general conditions.
In particular, if {z,} is an ergodic sequence with v as an invariant measure,
then the Lyapunov exponents A;(z;) are the same for v-almost every 1. In this
case the Lyapunov exponents can be denoted Ay,...,Aq, with Ay > ... > Aq.

An ergodic system is chaotic if the largest Lyapunov exponent is positive.
Some dynamic systems asymptotically approach fractal attractors. There are
several definitions of fractal dimensions. We only quote one of them. Let K
be the largest integer such that Zszl A; > 0, then the Lyapunov dimension is
defined as

LS
D =K+ — A;.
|AK+1|JZ:; !

Ergodic convergence rate.

Consider a one-dimensional algorithm for an unknown target z* in R =
[A, B], and define Ry = [0,1],R; = [41,B1] 2 R. The length L, of the
current uncertainty interval R,, = [A,, By] containing «* is L,, = length(R,) =
B, — A,,. This obviously depends on the location of z* in R, and thus on z1,
ie. L, = L,(xz1). We define the reduction or convergence rate of the n-th
iteration as
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r, = ’r‘n(l‘l) _ length(Rn_H) _ An+1 — Bn+1

= >1
length(R,,) A, —B, =5

with 7o = (41 — B1)/(A — B). We also introduce

N1 v
. 1 .
r=r(en) = Jim (Ly()¥ = lim (L 11 rnm)) ,
n=0
with L = B — A. If this limit exists and is the same for almost all z; with
respect to the Lebesgue measure, then r will be called the ergodic convergence
rate. Since L < oo this becomes

N

. L
= [T,
n=1

and the logarithmic form is

N
. 1
p:—logr:—}}gﬂmﬁglogrn. (9)
Note that x; is obtained from z* through the construction of Ry, which can be
made such that z; is in a set of full measure. The definition (8) of the reduction
rate can be generalized to multidimensional algorithms, using the volumes of
regions R, i.e. we define in this case

vol Rp41 >,
vol R,

and 79 = vol Ry /vol R.

An important question concerns the relation between the ergodic log-rate
p and the Lyapunov exponents A;. Consider the situation where the renorma-
lisation is affine with respect to z*, that is

Th =

Ty = gn(z*) = Quz™ +w,, (10)

where the full-rank matrix €2, and the vector w, may depend on some other
state variables z, of the dynamic process, not depending explicitely on z*.

Then vol R,, = vol Ry/|det ]|, and therefore

|det €2,,] > 1
Th =7y —(~ -, N=21.
|det Qn+1|

The dynamic process is (p41, 2nt1) = h(2n, 2n), with
~1 ~1
Tntl = Qn-l—lﬂn Tn — Qn-l—lﬂn Wn + Wn41

and z,41 not depending explicitly on z,,. The Jacobian matrix of the trans-
formation can then be written in the block-triangular form
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—1 i
Dh(zn, 2) = < Qn+(1)ﬂn gn ) ’

where ¥,, and ¥/, are some matrices. We thus get

Qi Ot »!
0 H?:1 i ’

where X!' is again some matrix. Provided these Jacobian matrices have real
eigenvalues for all n and the limits in (7) exist and are the same for almost
all starting points (z1,21), the log-rate p is equal to the sum of d' Lyapunov
exponents of h(.), with ' = dim z. Indeed, the Lyapunov exponents associated
with the d' components of z are

Dh™xy,21) = (

. 1
Ay = lim —logu} ,(z1,21),

n—oo n

where the y} , (1,21) are the absolute values of the eigenvalues of 2,41 ot
taken in decreasing order. We thus obtain

dl
!
>4
=1

1
lim —log|det Qn+1ﬂf1|
n—oo M,

1 n
= lim —1 —1
Jm Og(H’“z )

i=1

1
= —nILH;o; Zlogri =p.
i=1
This explains why, in the case d’ = 1, and in particular for the line search
algorithms of Sections 3 and 4, p is one of the Lyapunov exponents of the
dynamic system (usually the largest).

Ezamples.

The invariant measure for the bisection method is uniform on [0,1]. The
rate of the reduction of the uncertainty interval is always % Both the log-rate
and the Lyapunov exponent are equal to log 2.

For the Golden Section algorithm the invariant density p(z) can be easily
computed and is shown in Figure 3. The rate r, is constant and equals A\ ~
0.6180. The log-rate and Lyapunov exponents both equal log(14+)). Some other
second-order line search algorithms are presented in the next two sections.

Consider now the Gauss-map transformation h(z) = {1},z € [0,1], where
{z} denotes the fractional part of z, which corresponds to continued fraction
expansion,
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FI1GURE 3. The graph of the invariant density for the Golden Section. algorithm

with a, = k if z,, € (k%rl, %] The invariant density of the
[0,1]. The Lyapunov exponent is

: _ 1
Le. on = o—,

process is given by p(z) = m, T €

7.‘_2

6log?2

1
A= / (—2logz)p(z)dx = ~ 2.37314
0

The mapping h(.) being here nonlinear, A does not coincide with the ergodic
log-rate p, where at iteration n

11 1 hen — 1 <z <t
kok+1 kk+D k1 STk

Th =
This gives p = Y 1, px log(k(k + 1)) ~ 2.3976, where

/Uk 2log(k + 1) — logk — log(k + 2)
k = =
1

p(z)dx .
/(k+1) ( ) 10g2

3. FURTHER LINE SEARCH ALGORITHMS

We consider two of the algorithms discussed in Wynn and Zhigljavsky (1993)
for the minimisation of a uni-extremal function f(.), and use the notation e, e/,
of Section 1, with Ry = [0, 1]. Both algorithms yield a special dynamic system
and, under the symmetry condition for f(.), thatis f(z*—6) = f(a*+6) for any
6, are faster than the Golden Section algorithm in the ergodic sense. This sym-
metry condition makes the corresponding dynamic system time-homogeneous.
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Midpoint algorithm The midpoint algorithm always places the new point at

el = % and for symmetric case yields the dynamic system:
( 2z, ifacn<cn,en<%
B ;T"" ifmn<cn,en2%
Int1 = 2z, —1 ifxz, >c,,e, > %
([ Z=t2 ifan >cnen < 3
( 2e, if ¢, < cp,en <

L if ¢, < cp,en >

1
2
1
{ 2en 2
e = .
n+l 2e, —1 ifx,>cn, e, > %
1
3 €n . 1
[ 1= if vy > cp,en < 3

where ¢, = % = % + %, x; = z* and e; is any irrational number in [0, 1].
Obviously the dynamic system is two-dimensional, with the renormalised target
z* as one component and the renormalised location of the observation point
as the other. It has the special feature that the second component e,; only
depends functionally on x, through the test for left or right deletion, which
is in agreement with the equation (10). This implies that for any z, and e,
the Jacobian matrix of the transformation b : (z,,e,) = (Zn41,€nt1) is upper
triangular. The same is true for some other second-order line-search algorithms.
One can check that the mapping h2(.,.) = h(h(.,.)) is uniformly expanding,
which implies the existence of an invariant measure absolutely continuous with
respect to the Lebesgue measure.

The rate sequence associated with the dynamical system {(z,,e,)}n is de-
fined as

% ifzn<cn,en<%
€n if 2, < cp,en Z%
Tn = 1 . 1
2 lffanCmenZ§
1—e, if:ancn,en<%

The Jacobian matrix Dh(zy,,e,) at the point (z,,e,) can easily be computed,
see Wynn and Zhigljavsky (1993). We get for any n:

1
Dh(zn,e)=( ™ "
mnaen = 1 b
where u,, is some number we are not interested in. This gives the following
expressions for the Lyapunov exponents:

N
1
Ay = - lim T;logrn = p~0.5365,
N
1
Ay = — lim — ;bg(gri) =2A; —log2 ~0.3799.
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The numerical values were obtained by simulation as well as by numerical
solution of the Frobenius-Perron equation (5). The largest Lyapunov exponent
A1 coincides with the log-rate p = —logr. The ergodic rate r ~ 0.5848 of
the midpoint algorithm is a little better than the rate r = @ ~ 0.6180 of
the Golden Section algorithm. Other algorithms exist with even faster ergodic
rates. Window algorithm

The window algorithm has a fixed width 2¢, 0 < € < %, between e,, and el :

e

v | en+2 ife,<
nT ) e, —2e ife, >

N[0

Y

with e; any number in (2¢,1 — 2¢), and yields the dynamic system:

{ C”:_E if z, <cp, 1—€e— 52-6|-5 if z, <cp
Tniyl = Ty —cpte : Cnt+1 = 2¢ " :
S e if &, > ¢, €+ i if &, > cp,

where ¢, = %(en +el) and z; = x*.
The rate sequence associated with the dynamical system {(z,,c,)}n is de-

fined as

— cn + € ifz, <e,
"l 1—c,+e ifz,>c,.

As in the case of the midpoint algorithm, the Jacobian matrix of the trans-
formation h : (z,,¢,) — (Tnt1,Cnt1) is upper triangular and can be written
as, see Wynn and Zhigljavsky (1993),

1
1 o,
Dh(z,,c,) = ( 6" 2¢ > ,

where v,, is some number. This gives the following expressions for the Lyapunov
exponents:

Ay =p=—logr, Ay =2A; + log(2e).

The largest Lyapunov exponent A; again gives the log-rate p but the second
Lyapunov exponent is now negative, which indicates that the dynamic system
{(zn, cn)}n may attract to a fractal.

The Lyapunov exponents for € = % determined by numerical simulations,
are

Ay = p~0.639, Ay =2A; + log(2€) ~ —0.801.

The ergodic rate r for € = % is r ~ 0.528 and the Lyapunov dimension of the
attractor of the dynamic system {(zn,cn)}n is 1 — ﬁ—; ~ 1.798 < 2. Numerical
results show that the invariant measure for this system looks like the so called

SRB measure, see Ruelle , that is a measure which is absolutely continuous
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FIGURE 4. A fractal in the window algorithm: sequence of iterates {z,, r,,}.

with respect to the Lebesgue measure along the unstable direction. Here the
unstable direction coincides with the direction of the first component. Figure
4 presents {r,} as a function of {z,}, and reveals the fractal structure of the
attractor.

Lower bound for the ergodic rate

Consider the case of minimisation over [A, B], when we know that f(z) is
symmetric about z*. Let a,,b, be as in Section 1, ¢, = %, and suppose
f(an) > f(by). Then symmetry implies that @, > ¢,. We can thus achieve a
greater interval reduction than in the usual case by eliminating [0, ¢,) rather
than only [0, a,,). We refer to this as the optimistic rule. The recurrent relation
for {z,} and the rates {r,} are given by the formulas

T M .
Zo if z, < ¢y Cn if z, <ep
€T = n r =
n+l In"Ctn jfp. >c, n 1—c, ifz,>c,

l—cp,
One can clearly achieve the ergodic rate r = % if r,, = % for all n. A way to
do this is always to place the new observation point at one of the endpoints
of the new interval obtained by the optimistic rule. An important question is:
can we achieve an ergodic rate less than % for all z* lying in a set of positive
Lebesgue measure? The answer is no and we sketch the proof.

THEOREM: For any sequence {c,},0<¢, <1, n=0,1,...
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1
,u{m* €1[0,1] | l}\r{ninf (LN(z*))% < 5} =0,

where p is the Lebesgue measure and Ly(2*) = Ly = Lrorirs...ry_1, with
L=B-A.

Sketch of the proof. Each second-order minimisation algorithm using the
optimistic rule is determined by a sequence {c,, }. After N iterations, the interval

Ky for z* for which the reduction coefficients coincide with {r,})_; has the

length Ly (z*).
Let us fix 6, 0 < 6 < % and consider the sets

1 1
XN,g = {x* € [0, 1] | (LN(a:*))W < 5 —6} .
The total length of the union of the subintervals Ky N Xy s cannot exceed the

number of disjoint intervals K times the value of Ly and is therefore bounded
above by 2N(% — &)N. Thus, applying Borel-Cantelli arguments

1
,u{l'* €[0,1] | 1}5ninf(LN(x*))% <5- 5}

— ¢ infinitely often} =0,

—ufe € 0.1 EaG )Y <3

since for any 0 < § < %

Nz::l,u{m* €[0,1] | (LN(m*))% <%—6} SNEZ%ZN(E—@N < 00

This completes the proof.

The statement of the theorem implies that there are no second-order minimi-
sation algorithms with an ergodic rate smaller than % for the class of symmetric
functions, and therefore for any wider class of objective functions.

The authors are able to present an algorithm which achieves the optimal

ergodic rate of % for a class of locally smooth functions satisfying

f(z) = f(z*) + (z — z*)? @ + O(|lz — =*[**P)  for some 8> 0. (11)

The algorithm and the full proof of its convergence are very technical and can be
found in Wynn and Zhigljavsky (1995). The algorithm spends most of its time
behaving in the optimistic fashion described above. To avoid getting trapped,
a simple test is made which leads either to the continuation of the optimistic
process or to a correction involving backtracking to the point where a wrong
judgement was made. Thus, the algorithm requires an optimistic uncertainty
interval [u,,v,] constructed according to the optimistic rule which lies inside
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the ordinary (renormalised) interval [0, 1]. When v, — u,, becomes smaller than
a predefined value 6, a check is made outside [un,v,] to test for a mistake.
Backtracking then switches to a new correct optimistic interval. The authors
can show that the parameter 6, may be controlled in such a way that when z*
is a normal number to the base 2, the number of corrections is finite and the
effect of all iterations “wasted” on checking is asymptotically negligible.

4. MORE ON LINE SEARCH: GOLDEN NUMBERS AND SYMBOLIC DYNAMICS
Bernoulli shift and symbolic dynamics.

There is a well known connection between what we call in Section 1 the
Bernoulli shift and the binary expansion of a number in [0,1]. The basic idea is
that the forward transformation of the dynamic system induces a shift {z,} —
{z],} on infinite sequences of 0’s and 1’s, with

;U’n = Tn+41 - (12)

This shift, also called the Bernoulli shift, is equivalent to the transformation
(2) on [0,1], and is a key point for many important ideas in ergodic theory.
The corresponding dynamic system induces a measure on the sequences, which
is invariant with respect to the shift (12). Moreover, the same measure can
be found as an equilibrium measure, in the probabilistic sense, generated by
a bi-infinite sequence of independent Bernoulli trials {X,}, where prob{X,, =
1} = prob{X,, = 0} = 1. Forward Bernoulli trials are easily obtained from
the dynamic system (2), initialised by a random variable g = Uj uniformly
distributed on [0, 1]. If one chooses X,, = 1 when z,, < % and X,, = 0 when
T, > %, then {X,} is a Bernoulli trial. The dynamic system (2) codes the
value z* in [0,1] in terms of its binary expansion, through the sequence {X,}.

This translation of a dynamic system into a shift on an infinite sequence of
symbols, and its probabilistic counterpart, is referred to as symbolic dynamics,
and is an important tool for the study of systems. It is closely connected to
coding theory. The “flows” in the continuous topology of the system are “coded”
into sequences of symbols. This coding is most easily carried out when there is
a so-called Markov partition imbedded in the original dynamic system. This is
the generalisation of the partition [0,1] = [0, %) U[$,1] of the Bernoulli shift.
In addition, the natural stochastic process is a Markov chain, possibly of high
order.

The Golden Section algorithm revisited.
We first give the coding for the Golden Section algorithm of Section 1.
Observe that the invariant measure is supported on I = [152, 2] with A =

2 2
V51

>—, see Figure 3. We shall restrict attention only to this interval. Form the
partition

I=LULULUIL,

where
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e e L R
1-A A 1—-X| A
A 1-X2|1=X] X

TABLE 1. The Golden Section table

1—X A Al 1 A A1+
Ilz T o 712: oo 713: _71__ 7I4: 1__7L -
2 2 2°2 2 2 2 2

Now if we consider an initial random variable Uy, with probability density given
by the invariant density of Figure 3, and iterate according to the transformation
(3), we obtain a 4-state Markov chain {X,,} with

{Xn=j} & {UneL;}, j=1,...,4.

This chain has the transition matrix

0 1 0 0

0 0 A 1—-2AX
P= 1-X2 X2 0 0
0 0 1 0

The behaviour of the Golden Section algorithm, in the case where the objective
function f(.) is symmetric, is completely described by the sequence of left (L)
and right (R) deletions for the trajectory of the algorithm, whereas the process
of the last paragraph has a four symbol “alphabet”. It is straightforward to see
that the 4-symbol process is equivalent to a Markov chain in which the states
are pairs of successive deletions, with the equivalence

A-LL, BoLR, C— RL, D+~ RR.

The dynamic process (3) thus codes z* in terms of a sequence of symbols
in the alphabet {4, B,C,D}. It is clear that for this Markov chain certain
subsequences are prohibited (LLL and RRR), as can also be seen by tracking
the original algorithm in the symmetric case.

For that purpose, the Golden Section algorithm can be written as in Table
1. The first two columns refer to the point e from previous iteration, e = e,, at
iteration n, and the control point €'. The last two columns refer to the point
en+1 carried forward to the next iteration according to left and right deletions.

Other examples with four symbols.
The general table with four symbols is as follows:

Assume with no loss of generality that a < b. This implies a' > a, b’ < b,
R(a) = b, L(b) = a, and leaves only four possibilities. The Golden Section
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b [ v | L(b) | R(D)

(a) (b) (c)

! ! !
ele | L|R ele |L|R e|le | L|R
113|112 12| 1]1 !
2| 2|23 313|232 ala | b|b
2 | 1| 1] 1 1|1 ]1]1 '
313|2]|2 272|332 b|b |a]a

TABLE 3. Three “Golden” tables

algorithm corresponds to Table 1, the other three are given in Table 3(a), (b)
and (c).

In Table 3(c) the numerical values are b = v,

1,369+ 11, 2 .
— (T 52 )F 1) ~0.5698,
v=3(=—=—) (3\/69+11) )

which is solution of the equation (1 — )? =3,
a=1-b~04302, a0 =1—t+>~0.7549, b =1 —a ~ 0.2451.

Following similar arguments, the authors have enumerated all tables with 3
rows, that is with 3 different carried forward points e, each with its own control
e'. From symmetry considerations, the number of tables was reduced to 47,
see Pronzato, Wynn and Zhigljavsky (1995).

All these dynamic processes have an invariant measure which is best ex-
pressed as an invariant measure in the “state” associated with each row to-
gether with a discrete measure across the states. These processes often, but
not always, possess a finite Markov partition in the following sense. For each
state there is a partition of [0,1] which maps under left or right deletion to
a member of the partition for another state. For each state, the set of parti-
tion members thus forms a closed set of subintervals. Then, as for the Golden
Section algorithm, there is a Markov chain associated with the partitions, and
a corresponding finite set of symbols. These symbols are thus related to the
evolution of the process, and characterize both the current and future states.
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Consider Table 3(a). First, the conditional invariant densities for states 1
and 2, multiplied by the probability of being in the state, are respectively, see
Pronzato, Wynn and Zhigljavsky (1995):

8 6

pi(e) = 211y y(2) ) p2(2) = 21 5(2),

with fol (p1(z) + p2(z))dz = 1. The associated Markov chain has 4 symbols
A, B,C and D, two for each state, given by

A : state 1, 1,§ , B :state 1, §,§ )
4° 8 84

11 15
C :state 2, |=,= |, D:state2,|=,=]| .
32 2°6
The transition matrix is
0 1 0 O
0o o 2 1
P=1|, 3 % &
% % 0 O
5 5 0 0

To the symbols A, B,C, D one can respectively associate the symbols L, Ry,
Lo, Ry, where L;, R; refer to left/right deletion in state i = 1,2.
The ergodic log-rate for the process can be computed from the chain:

p=—Y pjlogr;,
J

where the 7;’s are the rates associated with the symbols, and the {p,}’s corre-
spond to the equilibrium distribution for the symbols, given by the eigenvector
of PT with associated eigenvalue 1. For the Golden Section algorithm,

( (LA 3. A3 A1 A
P1,P2,P3,P4) = 5 10710 10710 1075 10 )

and the log-rate is log(1 + A). For Example (a) in Table 3, (p1,p2,ps,ps) =

g%,%,%,%), with rates (ry,79,73,74) = (%,%,%,%). The ergodic log-rate is
= log 2.

We complete this section with a more difficult example which concerns a
family of algorithms with ergodic rate r arbitrarily close to %

e-optimal algorithms with finite number of states.

Consider the second-order line search algorithms defined by Table 4, where
k=1,2,...,m —1, with m > 2 a fixed integer, a parameter of the algorithm,
and

1

:W fori:1,...,m.

ui =1—v;, v
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(a) (b)

7 7

e e L R e e L R’
1 1
Uk 5Vk Vg1 | w1 up | 5(1+ug) | v | upgs
1 1
VUm | 5(14+vm) | v | U U, FUm Um—1 | U1

TABLE 4. e-optimal algorithms

7

e| e L | R
0 1 1 0
111/2] 1 |w
0|1/2 v | O

TABLE 5. Initialisation of the algorithms of Table 4

In particular, vy = u; = %, but we distinguish the states v; and u; since their
controls €' differ.

The values v; and uy have the same interpretation as in Section 3, that is
they can be considered as the endpoints of the normalized optimistic interval
for zy,.

The process can be initialised by (e,e’) = (0,1). Consider the pairs of
states and controls (e, e’) = (1,1/2) and (e, e’) = (0,1/2). We use the following
table:  We can easily check that this initialisation has no influence from the

asymptotic point of view. For almost all z*, after a finite number of iterations
the process arrives at e = u; or e = v; and the rules of Table 4 then apply.

In the case of functions symmetric around z*, one can compute the invariant
measure for the dynamic system {z,} characterizing the behaviour of z* within
the renormalised intervals. This computation is based on the fact that the
normalized variable

2221 if ep=v, 1<k<m
n =\ ozazew  jf en=1up, 1<k<m

l—en
always belongs to [0, 1] and obeys the following updating rule:

22 if z,<1i and e, # Uy OF Upy,
Zn41l = 2zn—1 if 2z, > 3 and e, # U, OF Uy,
Zn if e, =v,;, or um,

In many respects the asymptotic behaviour of this dynamic system coincides
with that of the Bernoulli shift (2).

To the left and right deletions in the state v; we respectively associate the
symbols L; and R;, and do the same for state u; with symbols L} and R. We
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symbols transition to transition stationary rates
probabilities | probabilities

1 1 om—F—3 142F

Lk (k =m— Lk+17 Rk+1 2) 3 1+27:—1 21 2F

/ ’ 1 1 2m—k-3 1
Ry (k >m— 1, Ry 2’ 2 14om—T 142k-1
1 142m 1
mel Rm . 1 . 2+12m 2+21m—1

! !

Rm—1 1, By 20 2 242m™ [f2m=2

1 1 27—
L,, Ly, Ry 5 3 0 Trom—1
1 1 1 142™ 7
R, L1, Ryt 3 3 21om 1T4om—1

’ ’ / 1 1 2m—F—3 1427
R (k<m - k1 Lrya 2> 3 LFam=T 21 2F

’ 1 1 2m—k-—3 1
Lk (k: _m_2 L17 Rl 25 9 1r2m—1 12k -1
’ ’ 1 142m~ 1
Rm—l Lm . 1 . 2+12m 2+21m*1

!

L. Ly, Ry 5> 5 2127 Trom-2
J ' / 11 1 142m 2
m m—1» m—1 27 9 2+42m 142m—1

R TR 11 0 2m T
m 1 1 27 9 1f2m—1

TABLE 6. Transition matrix and stationary probabilities for the algorithms of

Table 4

can then write down the transition matrix for these symbols, which is given
in the first three columns of Table 6. The transition probabilities in Table 6

determine the symbolic dynamics of the chain.

To compute the stationary probabilities we define new aggregated symbols

as

si={Li, Ri{, L, R} i=1,...,m—1; sy ={Rn,L }.

All the symbols in s; are equiprobable. We therefore end up with a m symbol

Markov chain, with the following transition probabilities:

1
Pr{sp — s1} = Pr{sp — sp+1} = 3 fork=1,....,m—1;

Pr{sm — sm-1} =1,

and all other probabilities equal to zero. The invariant probabilities

N —o0

1
p; = lim N{number of times t, t < NN,

such that the process is in state s;}

can be easily computed:

2m7i71

T 12t

Di

fore=1,...,m—2, pp_1=
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This yields the ergodic probabilities in Table 6, and the following simple
expression for the ergodic log-rate:
m—1

2 log2
— 10 .
1 + 2m71 g

This formula shows how large m should be in order to achieve a given ap-
proximation of the optimal log-rate log2. An important feature of the above
consideration is that all the ergodic arguments remain true when the objec-

p=—logr=

tive function f(.) is locally symmetric around z*, in particular if f(.) satisfies
condition (11). The proof is along the lines of Wynn and Zhigljavsky (1995).

5. ATTRACTORS IN THE ELLIPSOID ALGORITHM

We consider the ellipsoid algorithm for a linear programming problem. We
broadly follow the exposition in Bland, Goldfarb and Todd (1981). We shall
use ( to denote the variable in d dimensions. At step k, assume that the
solution is known to lie in the unit sphere Ry = {(] ||¢|| < 1}. We specialise
to the case of exactly d linear constraints, whose expressions at iteration k are

Akcgbka

where we use the standard convention that < means entrywise inequality. The
renormalised objective function is

Fe(Q) = i ¢

We first describe the general version, which will be specialized later into
the central-cut and deep-cut algorithms. Let the j-th coordinate of the vector
br, be bj,. At iteration k a cut is made in Rg with a hyperplane which is either
parallel to a constraint (constraint step) or to the objective function (objective
step), according to the following rules.

Constraint. If min; bj; < 0 and the minimum is achieved for j = r then de-
fine sy = r-th row of Ay and b,., = r-th component of b, s; and b,.;, correspond
to the most violated constraint at { = 0.

Objective. If min; by, > 0, no constraint is violated at ¢ = 0. Then take
Sk = ¢, the current vector defining the objective function.

The hyperplane with which Ry is cut is:

Hi ={C | s¢¢ =B}

When the cut is by the objective, the function f(.) is evaluated at ¢ = 0, and
B is taken equal to 0, although fixed negative values of 8y will be considered
later. This does not seem to have been done in the literature. The consistent
half of the sphere is identified, that is the half where the minimising point is
known to lie.

When the cut is by the constraint, we can still consider a cut through the
centre of the sphere, parallel to the constraint, that is take 8y = 0. This corre-
sponds to the central-cut algorithm. Another possibility is to use deeper cuts,
defined by By = by, which corresponds to the so-called deep-cut algorithm.
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We shall denote by ay = —f/||sk|| the algebraic distance from the origin
to Hy. The ellipsoid is constructed, with minimum volume, which contains the
consistent part of the sphere. This ellipsoid has its centre at

Gk =

Sk

ok
sl

and is given by
e = {C(C =) (T HC—G) S 1},

where

T
Ty = 63 <I—7r 5”’;) :
sl

with I the d-dimensional identity matrix. The full iteration, including renor-
malisation back to the unit sphere, is given by

Ap1 = Ardi, k1 = Jrer, brpr = be — Ak -
The various constants are related by

1 d _ ~2)2
T:—+a,0:—2T ,6:7(1 a)d,wzl— 1-o0,
1+d 1+a d? -1

where, at iteration k, & = aj. In the central-cut case oy, = 0 and the constants
1 2 _ _d’
& =T =
We make one standardisation in addition to the renormalisation just de-
scribed. This is to rotate the figure so that the objective is perpendicular to
the d-th axis with coordinate vector e = (0, ...,0,1)T. Thus let @} be a rotation

matrix such that Qng = I and that

become T = o=

Qrcrt1 = QrJrcr = €.
Then we can write
{=Qx¢
and we have the new equations
Apyr = Ak QF ) bpyr = by — Akl , Gry1 =e.

According to (8), we define the convergence (reduction) rate at iteration k

by
7 = vol Eppy =| det Jy |= 6%%(1 — ),

which, for fixed d, is only function of a. For the central-cut algorithm, ay =0
for all k, and the rate is d%\/1 — 2/(1 + d)/(d*> — 1)¥/? for all k. For d = 2, one
gets r ~ 0.7698. In order to obtain a small rate, a; should be chosen as large as
possible. However, simulations show that if the depth «a;, of the constraint cut
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is fixed, the renormalised ellipsoid can be inconsistent with the data, that is it
may not contain zj = A;lbk. On the other hand, the depth for the objective
cuts can be fixed, while classical deep cuts ap = —fB/||sk|| are used for the
constraints.

We shall study the 2-dimensional case d = 2 in some detail. With the
renormalisation and the additional standardisation just described the dynamic
system can be written as a four dimensional process. Without loss of generality
we may take

cosf sinf 051
A_[cosqﬁ sind)]’ ﬂ_|:52:|’
and consider z = (tan 6, tan ¢, 81, B2) as the four variables.
We consider the case in which oy is fixed to positive constant a® in the

objective case and deep cut is performed in the constraint case.
In the objective case 3; > 0, B2 > 0 and a typical iteration step

is given by
tan@’ = (1—7)tanf
tang’ = (1—7)tan¢
ﬂl _ 1 Bi(1+tan’ 9)%7‘rtan0
=

V3 (14+(1-m)? tan? 0) 3
ﬂ, — L,@z(1+tan2 $)2+Ttang
2T VE (14(1-m)2 tan2 )3

Consider the constraint case 8; < 0, By > (1. Then ap = ad = —(3; and the
iteration is

tan@’ = (1—7)tanf
tang' = tand (1 — (2 — ) tang ) — xz-m) tang

1—m 1+tan26 1—m 1+tan26
ﬂ, — B1+T
L VE(1—m) X
8, = 1 Pa(l+tan®(¢—0))Z +7Sign[tan(p—0)]
> ((1-m)?+tan2(¢—0))2

For the case #; > B2, B2 <0 we have o = a® = —f and

2
tang’ = teanl (1 —m(2—m) 1:12“24)4,) - w(lz,_,,w) 1+t::nq; )
tang’ = (1—7)tan¢
g = 1 Bi(1+tan®(—6))? +rsigntan(s—0)]
LoV (1=m)?+tan2($—0))¥
g, = B2+T
2 T Us(i-m)

This algorithm exhibits a complex pattern of special periodic attractors
which depends on the fixed value o chosen for the objective case, see Figure
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5. For each attractor, the solution zj = A;lbk lives on a number of distinct
concentric circles. At various critical values of a® the number of points in the
attractor and the radius of the concentric circles jump, see Figure 5. Between
these critical points the rate improves with increasing a°, see Figure 6. From
the point a® ~ 0.225 to a® = % there is a 3-point attractor with the rate
decreasing smoothly to its minimum 1/3 in the range 0 < a® < % Note the
improvement in the convergence rate when going from standard deep cuts, that
is a® = 0, to deep cuts with a® = 1/2, especially compared to the marginal
improvement obtained when going from central cuts (r ~ 0.77) to standard

deep cuts (r ~0.72).

0.5

0.45
0.4
035
03
0251
02/ v
015/
01

0.05/

FIGURE 5. Attractors in the ellipsoid algorithm: depths a? and afof con-
straint cuts as function of the fixed depth a® of the objective cut.

After some work the authors have been able to find the attractor at a® = %
It is given in Table 7 and cycles in the order z, — 2z — 2z, — 24...

Numerical simulations show that even deep cuts can be made deeper by
using ar = —ABk/||sk|l, with A > 1, for constraint cuts. Figure 7 presents the
renormalised sphere Ry and the attractor for the sequence {zy = A;lbk} in
the case A = 1.121,a° = 0.5195. The attractor is unusual, and illustrates the
difficulty of studying the properties of the limiting behaviour of the process.

Consider now the central-cut algorithm: for all iterations, objective and

2

constraint, « = 0,7 = %,0 =3,0= %,’/T =1- % It can be shown that if we

start with tan ¢ < 0,tanf > 0,tan ¢ X tan @ > —1 then for all iterations
tan(¢ —0) <0, tand < 0, tanf >0, tan¢ X tanf > —1.
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FIGURE 6. Ergodic convergence rate r as a function of the fixed depth a®of
the objective cut.

01 B2 tan @ tan ¢

2 _1 1 3v3 __ 1
@ 2 2 /13 V3:/13

2 1 Vv3-1 | _3 _3V38

bl 2 Vio | Vi3 V13

y v3-1 | _1 _1_ | _3

c /10 2 \/3\/13 V13

TABLE 7. A three point attractor in the ellipsoid algorithm; d=2

It is possible to find the inverse of the iteration and write down the Frobenius-

Perron equations, but Figure 8 shows that the invariant measure for (tan 6, tan ¢)
lives on a fractal, indicating a totally different limiting behaviour from the deep-

cut case. The numerical evaluation of the box counting dimension of the fractal

of the four dimensional process, see for example Barndorff-Nielsen, Jensen and

Kendall (1993), gives the estimate ~ 2.1.

6. A FRACTAL IN THE STEEPEST DESCENT ALGORITHM

We turn our attention now to the classical steepest descent optimisation al-
gorithm. Although this algorithm is not used much in practice, many other
algorithms such as the conjugate gradient and variable metric methods being
preferred, it provides an excellent framework for studying the dynamic systems
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FIGURE 7. An attractor in the ellipsoid algorithm when using very deep cuts.

FiGure 8. A fractal in the ellipsoid algorithm: sequence of iterates
{tan Oy, tan ¢y }.
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approach. It is easy to write down the algorithm and discuss renormalisation.
Even in the three-dimensional case, studied here in some detail, it is clear that
much about the behaviour is unknown, and this fact can be deduced from the
complexity of the basin of attraction for the normalised version of the algo-
rithm. The following conclusions can be drawn from the study of the three
dimensional case for a quadratic function.

(i) The asymptotic convergence rate of the algorithm depends on both the
function and the starting point. For the quadratic case the rate depends on the
largest and smallest eigenvalues of the quadratic form defining the function, a
well-known result. The dependence on the starting point is extremely complex
owing to the presence of a fractal-like structure.

(ii) It is conjectured, but not proven, that the renormalised algorithm at-
tracts to a two-dimensional plane. The presence of the fractal, see Figure 9,
encourages the authors to doubt whether a real proof of this is available in the
literature.

(iii) Under the assumption of attraction to 2-dimensions, there is a two-
point attractor whose values give precisely the rate, and the attractor depends
on the initial starting point.

Let A be a d-dimensional symmetric non-negative definite matrix and set
the quadratic objective function to be

flx) =zt Az

Without loss of generality we immediately replace A by a diagonal matrix H
whose diagonal elements are the ordered eigenvalues of A. The algorithm can
then be written:

Tr4+1 = (I — Cka)l‘k , (13)

where [ is the d-dimensional identity matrix. The optimum step length «, for
the steepest descent algorithm is chosen to minimise

eI (I — apH)H(I — apH)zy,
and takes the value

T 172
x, Hexy,

o = —~—— .
I£H3wk

We adopt here the renormalisation which keeps the minimising point at the
origin (0, ...,0), and simply rescales zy, by its own norm to keep the renormalised
process always on the unit sphere. The convergence rate at iteration k is simply
the ratio of norms:

||kl
[EA]

This can also be interpreted as the inverse of the ratio of the renormalisation
constants from each stage.

227



For the case d = 3 it is convenient to write the algorithm in unrenormalised
form and to assume that the eigenvalues are distinct. Without any loss of
generality, we then take

1 00
H=| 0 a 0 ,
0 0 b

with 1 < a < b. The algorithm (13) can then be written

1 k41 = (1 — f(zK,a,b)) 714

zo 1 = (1 —af(zg,a,b))zoy

z3 k41 = (1 — bf(zx,a,b))z3s,

z24+a’z24+b222 . .

where f(z,a,b) = W and where where x;; is the j-th component
of zy. Notice that the terms in the brackets on the right hand sides are scale
invariant and therefore do not depend on the renormalisation. We adopt a
change in variables which incorporates the renormalisation. Thus define

X
t=23

5 zi:xi/||(m1,m2,m3)||, 2:1,2,3
Ty

It is useful to visualise the process as lying on a 3-dimensional unit sphere {z |
lIz|| < 1}, with 25 as the vertical component and ¢ as the tangent of the angle 0
between the two horizontal components (z1, z3). The vertical component is the
eigen-direction for the middle eigenvalue (= a) and the horizontal directions
for the largest (= b) and the smallest (=1) eigenvalues.

Simulations show that the process attracts to the horizontal (z1, z3) plane.
In doing so it attracts to two “conjugate” points on the unit circle 22 + 22 =1
which depend on the starting point. Figure 9 shows the projection onto the
plane (z1,23) of the region of attraction to a small neighbourhood, radius <
0.02, of the point (z1,22,23) = (0.9606,0,0.2781), with a = 2 and b = 4. It
illustrates the difficulty in studying the convergence rate as a function of the
starting point: given a starting point, the convergence rate is unpredictable.

If the limit set of the algorithm is indeed the unit circle then certain facts
can be established.

Conjugate points and rates. The conjugate points have tan values t and
t' that satisfy

r_
t= 15
If indeed the process attracts to these points, then it switches between them on
alternative iterations. The asymptotic rate of the algorithm can be computed
by taking both iterations into account. The rate, rt, for one iteration from
tr = @3k /T1k tO try1 satisfies

2 2
Ty g1 T 23 kg

2
Tk =

2 2
T + Ty
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FIGURE 9. Fractal for steepest descent: projection onto the plane (21, z3)of a
region of attraction.

Then the full 2-step rate from ¢y to tgyo is
(1—b)%bt2

2
l ’r‘k’r‘k+1 = . (14)
(14 b382)(1 + bt2)
This achieves a maximum at t, = %, giving a global worst rate (recall that
smaller 7 is better) of %, and clearly, then, rx41 = 7. This result is well

known in the literature, see for example Luenberger (1973).

A special point. It is instructive to take one inverse iteration of the algorithm
starting on the circle at some zty1. The solutions then satisfy either zop = 0,
which corresponds to the conjugate point for zp41 on the circle, or

a—1

2=—""
T 2(b—a)

(15)
The set of points satisfying (15) forms a pair of geodesics on the unit sphere,
with a straight line projection into two-dimensions, the curve and the line
intersecting the unit circle at special points satisfying (15) and zg; = 0. One
can consider this as the only “exit” route for the inverse process starting on
the unit circle at points given by 23 x+1 = 0 and

b—a

tip = Ra—1) (16)
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A special measure. It appears then that the algorithm attracts to points
determined by the start and the largest and smallest eigenvalues of H. In
this sense the limiting behaviour is complex but stable. Figure 10 shows the
distribution induced on €, the limiting angle for the limit points on the circle, for
a large random sample of starting points chosen uniformly on the unit sphere.
It is seen that there are peaks at the above special points (16), indicating a
preference for “entry” to a neighbourhood of the circle at these points. The
other symmetrical peaks correspond to the conjugates (15) of the points (16).

35 4

251 1

15+ 1

FiGURE 10. Density of 6 produced by a uniform distribution of starting
pointson the sphere (d = 3, eigenvalues 1,2,4).

Behaviour close to the circle. Consider the situation in which z is close
to the circle (zg = 0), and thus close to one of the conjugate limit points.
It follows that after two iterations, jumping to be near the conjugate point
and jumping back again, zp42 should be close to z;. We can study this be-
haviour by computing the Jacobian of this double transformation at z; = 0.
In fact, it is more convenient to compute the value of the Jacobian matrix of
the transformation (£%,23;,) = (17,9, 23 g4) at 221 = 0. This is

J:[l J12],

0 Jyp
where
_ 2a2(14t3)(14b%2)%(a—1)(b—a) b242 b
J12 = b7 ¢2(b—1)3 [(a - 1) + 0%t ((1 - )]
Joy = (a—1+b°t*(a—b))*(a—b+b"t*(a—1))

- b4t4(b_1)4 I’

230



with ¢ = t;. Stability near the circle is controlled by whether, as a function of
t2, Jaa(t?) < 1: stable, or Jaa(t?) > 1: unstable. We always have instability

as |t| = 0 or oo, since then Jyy — oo. Now, Joa = 0 has roots in t? at
2 = %, 12 = Wf_la) with t%4 < t% if and only if b < 2a — 1. Between t4

and tg, Joo has a single local maximum at ¢ = b% with value

1 (2a—b—-1)* ((b—a)—(a—1))*

2 (S Tl (s sy ) TS

Joa(

The stable region for #? for which Jos < 1 is the interval between t*2 and its
conjugate b‘*t;*z’ where

o2 (a—1)2+(b—a)?+(b-—a)a—1)—/(b—a)?+ (a—1)2(b—1)
b%(a — 1)(b—a) '

This interval contains {t%,t%} and gives the support of the density presented
on Figure 10. Since r? = TTk+1, given by (14), is minimum when ¢, — 0 or
t, — o0, the best asymptotic rate r*, when the starting point is not on the
circle zg = 0, is obtained for 2 = t*? or t2 = W%Z. Note that 7* thus depends
on a, although the limiting behaviour is in the plane zo = 0. It tends to zero
when a tends to 1 or b, and its largest (worst) value (b — 1)/v/b> 4+ 6b+1 is
achieved for a = (b+ 1)/2 and t* = (v/2 — 1)/b.

A similar study can be made for the circle zz3 = 0. One has then Jzs > 1
for all #? and the circle 23 = 0 is therefore locally unstable.

Steepest descent with relaxation. The introduction of a relaxation coefficient
in the steepest descent algorithm, that is

T 172
xy, Hezy,

Tk Tk e 0<y <1,
w{H:‘wk o K

zhyr = (I =
totally changes the asymptotic behaviour of the algorithm. For fixed H, de-
pending on the value of 7, the renormalised process attracts to periodic or-
bits independent of the starting point or exhibits a chaotic behaviour. Fig-
ure 11 presents the (classical) period doubling phenomenon for d = 2 and
1 .
H = < 0 2 ): the attractor of the sequence {|0i| = |arc tan(wor/@1)|} is
plotted as a function of v when b = 4. One can easily show that the first
period-doubling value of « is 4b/(b+ 1)?. Using a relaxation coefficient v close
to 1 is thus of special importance, since it allows us to avoid meeting the worst
ergodic convergence rate, which is always possible when v = 1.

7. A “CUBIC” ALGORITHM FOR LINEAR PROGRAMMING

While the natural region for renormalisation in the ellipsoidal algorithm was
a sphere, other regions can be used, e.g. cubes, leading to a quite different
behaviour. We consider the linear programming problem, and for the sake of
simplicity we restrict our attention to dimension d = 2.
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FIGURE 11. The period-doubling phenomenon for steepest descent with relax-
ation.

Deep-cut algorithm

At step k, assume that the solution is known to lie in the unit square
Ro = {C | |I¢lleoc < 1} of the (z,y) plane. The orientation of the square is
chosen such that the objective is f(¢) = ¢?'¢, with ¢!’ = (0 1). The constraints
are y > arx + by, and y > cpx + di.

We consider central cuts for the objective case: when by < 0 and di < 0,
cancel the upper half of the square, see Figure 12, and renormalise back to
the unit square. Central cuts for the constraint case, parallel to the constraint
and passing through the origin, do not yield a convergent algorithm. We thus
consider deep cuts, that is cancel the part under the most violated constraint
at the origin, where the optimum cannot lie, see Figure 12, and renormalise
back to the unit square.

One can easily show that the ratio ¢j/aj remains constant, and we shall
denote its value by 7. When 7 = 1 —2* or 1/7 = 1 —2* the convergence of the
unrenormalised process is finite, and we shall thus exclude this situation. The
updating equations are then as follows, with r; the reduction rate in terms of
volume:
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y = cpx +dy, y=arz+b, Y=crt+d

Yy = agz + b
by <0,dr, <0 b >0, b, > dy, dr, >0, d, > by

FiGURE 12. The “cubic” algorithm with deep cuts for d = 2

if by < 0, dr <0
k1 = 2ak, beyr =2bp + 1, dppy =2dp + 1, 7, = %,

if by >0, b >dg

+a 2bgtak(a—1)—(8+1

Aptr1 = i ak, bk 1= k k(l ) ( ),
2dp+7(a—1)—(8+1 14+a)(1—

dk 1 k (1 ) (ﬂ ), T = ( )4( ﬁ) ,

where a = min(%, 1), B = max(by — ag, —1)
if dp>0,dp>0b

1—
Uht1 = 750k, bri1 =

2di+1ak(at+1)—(8+1)
1 )

2bk+ak(a+1)7(,3+1)

1-3 ’

"aas)
1 )

di1 = -
where a = max(1:=%, —1), 8 = max(ray, + dy,—1).

Tag ’

Tk

One can show that after a finite number of iterations the behaviour of the
dynamic system zp = (ag,bg,dr) — Tg+1 = (@k41,br+1,drs1) is periodic.
We assume first that 7 < —1 and define &k, by

1—2ktl 7 <1 =2k,

We also define the following states

Sj = 0 ,jZO,...,kIT,

S . = ]_ ’jzl’.-.,kq—,
27 + 20t —1

4271

1_72-’01— ! T

T + 2k~ 0

The behaviour of the process is then completely described by

/2, 1/2 )
Sj_)'sj-l—l — Sj+1, ]:Oa"'ak‘r_la
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Yy = apx + bg Yy = apx + by Yy = arx + by

A1

br > 0, b, > dg, br > 0, by, > dg br > 0, b, > dg

FI1GURE 13. The “cubic” algorithm with deep cuts above and under the con-
straints for d = 2

with reduction rate % for each transition,

1 T2
Sk, — > 2 — S0,

kr

Withrlzl—%

Jry =14 221 if 1 — 2kt < r < —2kr and

! !

71 r T2
Sk_,_—>Z — S0,

with 7} = (1—7—267)(1—1=20) py = —L if —9kr < 7 < 12k, The period

T

is 2k; + 2, and the ergodic log-rate is

1— 2k
log(1 —

! )
kr+1 T '

= T 1 2 —
p - log

k: +
The log-rate p is infinite for 7 = 1 —2*, which corresponds to finite convergence
for the original unnormalised process. The same study is valid for —1 < 7 < 0,

and the same results hold with 7 replaced by % We have inf,. p = 10%3.

Double cuts

The reduction rate of the algorithm can be improved by considering deep
cuts above and under the constraints, as indicated in Figure 13 for the con-
straint y > arx + by.

When 7 =1—2*% or 1/7 = 1 — 2F the convergence is finite, and we exclude
this situation. For other values of 7, the behaviour is again periodic, but with a
more complex structure than for ordinary deep cuts. Consider the case 7 < —1.
One can show that the process passes through states of the form (1,0, d), with
d < 0. We then have the following transitions, with reduction rates indicated
above the arrows:

L, 2 1/2 1 1/2
0 | Y 1 /2 /2
d fild) +7 fi(d)
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with
fild)=2d+ (2 —1)(1—7)
and j* = j*(d) such that fj«_1(d) <0 < f;=(d). Then, if f;<(d) > —(7+1)

1 _1 1
0 7(17‘r*f]:;(d))/(47) TTl _L{T 0 R
() 0 T
otherwise
1 e 1
o V[ nte Yo [
fj* (d) 0 _fj* (d)

Consider now the imbedded process

- _ [+l i fe(d) > —(m+1)
wp =d — w1 = { —fj+(d) otherwise.

We can write wgt+1 = h(wyg), with
h(w) = max(r + 1,— f(w)), 7T+ 1 <w <0,

and

(1—-7)(1—29) N et [ )

f(w) = fi(w) when == <=

This imbedded process is periodic, its period n is a function of 7. Let s1,...,s,
be the states visited by the imbedded process. The original process is pe-
riodic too, with period T'(7) = Y i, 2j*(s;) + 2, for instance T(—9) = 6,
T(—10) = 16, T(—11) = 4 and T(—11.0001) = 102. Its ergodic log-rate is
ﬁ Zyzl(Zj*(si)log2 — 2logr;), with r; = %’W if fi«(s;) > (7 +1)
and r; = _%2 otherwise. The worst log-rate is log 2 obtained for 7 = —2. The
same study is valid for —1 < 7 < 0, simply replacing 7 by %
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